brain-matters

RECENT POSTS

The Bionic Mind: Building Brain Implants To Fight Depression, PTSD

Liss Murphy this summer, with husband Brian, son Owen and sheepdog Ned. (Courtesy)

Liss Murphy, who had surgery to implant Deep Brain Stimulation for depression in 2006 and got much better, on Cape Cod in summer, 2014, with husband Scott, son Owen and sheepdog Ned. (Courtesy)

Ten years ago, with little warning, Liss Murphy fell victim to paralyzing depression, a “complete shutdown.”

She was 31, living in Chicago and working in public relations. The morning of Aug. 13, 2004, she had gone in to the office as usual. “It was Tuesday, and I remember the day so clearly,” she says. “The sun — everything — and I walked out — it was about 11 o’clock — and I never went back. The only time I left the house was to see my psychiatrist, who I saw three times a week.

“I have a hard time believing it was depression, in a way, because it was so pervasive and powerful,” she says. “It invaded every aspect of my life. It took so much away from me. And it happened so fast, and it was so degrading — it took everything from me.”

Murphy came home to Boston, and she tried everything — medications, talk therapy, even repeated rounds of electroshock. But she was barely able to get out of bed for months — then years. Her husband and family and top-flight doctors cared for her, but she sank so low she tried twice to commit suicide.

Finally, a psychiatrist told her about a cutting-edge trial to implant stimulation devices deep in the brains of patients with severe depression. She signed up. In June of 2006, she had the operation.

“My greatest hope that day was to have something go horribly wrong and die on the table,” she says. “I didn’t care.”

She didn’t die. Over the next few months, she got better. These days, eight years after the surgery, if you saw Liss Murphy walking her Old English Sheepdog, Ned, or playing with her 3-year-old son, Owen, only the faint silver scars on her clavicles would hint at anything unusual: That’s where the batteries that power her brain stimulator are implanted.

“We’re taking a wall of computers, basically, and putting it into something that would easily fit inside a box of Tic-Tacs.”
– Jim Moran, Draper Laboratory

But though the surgery changed Murphy’s life, “the trial, on average, didn’t work,” says Dr. Emad Eskandar, the Massachusetts General Hospital neurosurgeon who operated on her. “When you pooled everyone together it didn’t work. But there were like five people out of the 10 we did that had remarkable benefits and went into complete remission. We couldn’t continue with the study because on the average it failed, but for those people in whom it worked, boy did it work.”

Now, as part of a $70-million project funded by the military, researchers are aiming to take brain implants for psychiatric disorders to the next level.

Over the next five years, they aim to build a device that can sit inside a patient’s head, pick up the onset of depression or post-traumatic stress disorder, and head it off before it hits. One implant researcher calls it “a moonshot for the mind.” Continue reading

What Depression Stole From Me, What A Brain Implant Restored

Liss Murphy of Boston was one of the first people in the world to be successfully treated for severe depression with Deep Brain Stimulation, an electrical device implanted deep inside her brain. Now, researchers funded by the Department of Defense are trying to bring that technology to the next level, and use it to treat depression and PTSD. Here, she describes her own experience before and after the operation that changed — perhaps saved — her life.

By Liss Murphy
Guest contributor

What is depression?  After all this time, I should know. I don’t.

I know some things about depression, though. Depression is the ultimate subtractor, a thief. It erodes just about everything you are, you were, you have, you want. It takes the promise out of your existence. It destroys any semblance of hope or potential or desire or goodwill. Gone, it just is gone. It is utterly corrosive in a way that I still cannot understand.

Liss Murphy (Courtesy)

Liss Murphy (Courtesy)

Depression stripped my life of many things, of everything I knew at the time. It took away the promise of a normal day; the ability to enjoy and progress in my career and interests and relationships; the ability to think.

What follows is an attempt to make sense of the unknowns, of which there are many.  But also, what follows is a story of sickness, recovery, healing and acceptance.

What was it about August 13, 2004 that made the day what it was?

I have been told that I’d had depression before. Sure, I’d felt lousy, hopeless, tormented. But I was able to function. I could and did go on, as I needed to. It was not a roadblock.

This 2004 episode was different in every possible way. It descended on me overnight, it seems. Yes, I had been tearful and unhappy for a few weeks leading up to my crash, upset that my husband and I had separated. But so what?

It was the beginning of a complete system meltdown — a mental, physical, psychological, physiological meltdown. A total shutdown.

The details are foggy, though some of it seems so clear and vivid. It was a Tuesday, a gorgeous sunny August day. My office had a view of Lake Michigan. I walked out of the office mid-morning and never returned.  My computer was on, my running clothes, sneakers, other personal belongings in my office – waiting for me to return. But I never went back.

One important detail I cannot recall is whether I drove to work or took the subway.  I think I drove but … I am hung up on those details now. Because that day I did not just have a mental meltdown; it was the beginning of a complete system meltdown — a mental, physical, psychological, physiological meltdown. A total shutdown.

I can still see each room in my Chicago apartment as it was back then, as confused as I was. Each day, the rooms got more confusing, more messy, until it all blended into a universal squalor. I see images of brown rice boxes on the kitchen counter, dull steak knives, the tips of burning cigarettes against the hue of a bluish-purple sky just before nightfall. I slept on the couch. I stopped running, started smoking. After that day in August, I only left to see my psychiatrist, three or four times a week, until I came home to Boston.

It wasn’t feeling sad. It was feeling nothing. It was a total void of feeling. For two years, I was basically mute — totally withdrawn from everything. Continue reading

Cheap, Low-Tech Devices Help Paralyzed Patients ‘Speak Their Minds’

Cathy

Cathy Hutchinson, who had a brainstem stroke, is using a head mouse to type on a prototype keyboard, and has typed that she likes it. (Courtesy SpeakYourMind Foundation.)

By Suzanne Jacobs
Guest contributor

When the man started quoting Shakespeare with his eyebrow, Dan Bacher knew he was on to something.

All it took was an off-the-shelf webcam, a green sticker and an app, and the stroke victim had regained his ability to communicate.

“Before that, what he would do is, someone would stand next to him and literally read through the alphabet, and then he would raise his eyebrow to pick a letter,” Bacher says. “He was fully dependent on someone else, and he couldn’t initiate conversation. Someone had to say, ‘Do you want to say something?’”

So Bacher, an engineer, and his colleagues put a green sticker the size of a pencil eraser on the man’s eyebrow and turned a webcam into a tracking system that could follow the green sticker and register a raised eyebrow as a mouse click. With a custom-made app, the man could then scroll through the alphabet and type on his own.

And then Shakespeare — part of a line from “Henry IV” that goes, “A good wit will make use of anything; I will turn diseases to commodity.”

“It was just like one of those wow moments, where we realized, ‘Wow, what we’re doing here really is making a difference,’” Bacher recalls. The device was just a prototype, but Bacher said he hopes to have something permanent for the patient in the coming months.

Bacher is the founder and CEO of the SpeakYourMind Foundation, a nonprofit organization based in Providence, Rhode Island, that’s developing low-cost and easy-to-use communication devices for people with neurological disorders who are “locked in,” virtually unable to move.

So far, the organization has only worked with about 12 clients and is still experimenting with prototype devices, but ultimately, Bacher says, he wants to have products that are widely available. Already, he says, people have been contacting him from around the country asking for help.

SpeakYourMind is far from the cutting edge of research on “brain-computer interfaces,” but that’s the point. Having worked in Brown University’s BrainGate Lab, one of the leading research centers for advanced brain-computer interface technology, Bacher knows all about the cutting edge, and that’s why he decided to start SpeakYourMind — to give people a simpler option, at least for now. Continue reading

Beyond Good And Evil: New Science Casts Light On Morality In The Brain

Harvard brain scientist Joshua Buckholtz has never forgotten a convict he met back when he was an undergrad conducting psychological tests in prisons. The man had beaten another man nearly to death for stepping on his foot in a dance club.

“I wanted to ask him,” he recalls, “‘In what world was the reward of beating this person so severely, for this — to me — minor infraction, worth having terrible food and barbed wire around you?’ ”

But over the years, Buckholtz became convinced that this bad deed was a result of faulty brain processing, perhaps in a circuit called the frontostriatal dopamine system. In an impulsive person’s brain, he says, attention just gets so narrowly focused on an immediate reward that, in effect, the future disappears.

He explains: “If you had asked this person, ‘What will happen if you beat someone nearly to death?’, they will tell you, ‘Oh, I’ll be put away.’ It’s not that these people who commit crimes are dumb, but what happens is, in the moment, that information about costs and consequences can’t get in to their decision-making.”

For two decades, researchers have scanned and analyzed the brains of psychopaths and murderers, but they haven’t pinpointed any single source of evil in the brain. What they’ve found instead, as Buckholtz puts it, “is that our folk concepts of good and evil are much more complicated, and multi-faceted, and riven with uncertainty than we ever thought possible before.”

In other words, so much for the old idea that we have an angel on one shoulder and a devil on the other, and that morality is simply a battle between the two. Using new technology, brain researchers are beginning to tease apart the biology that underlies our decisions to behave badly or do good deeds. They’re even experimenting with ways to alter our judgments of what is right and wrong, and our deep gut feelings of moral conviction.

One thing is certain: We may think in simple terms of “good” and “evil,” but that’s not how it looks in the brain at all.

In past years, as neuroscientists and psychologists began to delve into morality, “Many of us were after a moral center of the brain, or a particular system or circuit that was responsible for all of morality,” says assistant professor Liane Young, who runs The Morality Lab at Boston College. But “it turns out that morality can’t be located in any one area, or even set of areas — that it’s all over, that it colors all aspects of our life, and that’s why it takes up so much space in the brain.”

So there’s no “root of all evil.” Rather, says Buckholtz, “When we do brain studies of moral decision-making, what we are led into is an understanding that there are many different paths to antisocial behavior.”

If we wanted to build antisocial offenders, he says, brain science knows some of the recipe: They’d be hyper-responsive to rewards like drugs, sex and status — and the more immediate, the better. “Another thing we would build in is an inability to maintain representations of consequences and costs,” he says. “We would certainly short-circuit their empathic response to other people. We would absolutely limit their ability to regulate their emotions, particularly negative emotions like anger and fear.”

At his Harvard lab, Buckholtz is currently studying the key ability that long-ago convict lacked — to weigh future consequence against immediate gratification. In one ongoing experiment (see the video above), he’s testing whether he can use electrical stimulation to alter people’s choices. Continue reading

Ask A Philosopher: What Does New Brain Science Mean For Free Will?

Tufts philosophy professor Daniel C. Dennett on a schooner in Greenland in June. (Courtesy of Phil Wickens)

Tufts philosophy professor Daniel C. Dennett on a schooner in Greenland in June. (Courtesy of Phil Wickens)

More than once lately, brain scientists have told me, “You won’t get your answer here. That’s the purview of philosophy.”

The drill goes like this: They boggle my mind with the ways they’re beginning to be able to dissect and tweak the brain processes that underlie our moral selves, from decisions to judgments to feelings. (See Beyond Good And Evil: New Brain Science Casts Light On Morality In The Brain.) I eventually ask something like, “But if it’s all the brain, if it’s all biology, then what does that mean for free will? For moral responsibility? Blame for bad deeds? Credit for good?” And they reply, a bit apologetically, “That’s not a scientific question. It’s a normative one. Try philosophy.”

So I did. I reached Tufts University philosophy professor Daniel C. Dennett on an island off the coast of Maine. A seasoned veteran of the free-will debate — see his recent back-and-forth with “Free Will” author Sam Harris — he courteously interrupted his sailing and writing and ocean-gazing to field my frustrated questions. Our conversation, lightly edited:

Given that we now know — and can even perturb — some of the brain mechanisms of morality, and we see perhaps more clearly than ever that this is biological, what are the implications for blame, credit and free will to us, to everyday people?

First, it’s no news that your mind is your brain, and that every decision you make and every thought you have and every memory you recall is somehow lodged in your brain and involves brain activity. Up until now, we haven’t been able to say much more than that. Now, it’s getting to the point where we can. But it has almost no implications for morality and free will.

Why not?

Knowing where somebody has a thought doesn’t tell you anything about whether it’s an evil thought, whether they shouldn’t have thought it, whether they have their wits about them. You can’t even tell much about whether they’re sane or crazy from just looking at the activity of their brain. We can get some purchase on that, but not much.

But doesn’t it give a whole new weight to the idea of ‘Blame the brain, not me’?

Somebody wrote a book called ‘My Brain Made Me Do It,’ and I thought, ‘What an outrageous title! Unless it’s being ironic.’ Of course my brain made me do it! What would you want, your stomach to make you do it?

If you said, ‘My mind made me do it,’ then people would say, ‘Yes, right.’ In other words, you’re telling me you did this on purpose, you knew what you were doing. Well, if you do something on purpose and you know what you’re doing and you did it for reasons good, bad or indifferent, then your brain made you do it, of course. It doesn’t follow that you were not the author of that deed. Why? Because you are your embodied brain.
Continue reading

Brain Scientists Learn To Alter And Even Erase Memories

This optogenetic device uses light to activate specific brain cells. (Courtesy McGovern Institute for Brain Research at MIT)

This optogenetic device uses light to activate specific brain cells. (Courtesy McGovern Institute for Brain Research at MIT)

For 32 years, Leslie Ridlon worked in the military. For most of her career she was in army intelligence. Her job was to watch live video of fatal attacks to make sure the missions were successful.

“I had to memorize the details, and I have not got it out of my head, it stays there, the things I saw,” she says. “The beheading — I saw someone who got their head cut off — I can still see that.”

Leslie Ridlon retired from the military eight years ago, but she finds she cannot work because she suffers from severe PTSD. (Courtesy)

Leslie Ridlon retired from the military last year, but she finds she cannot work because she suffers from severe PTSD. (Courtesy)

Ridlon is now 49 and retired from the military last year, but she finds she cannot work because she suffers from severe post traumatic stress disorder. She has tried conventional therapy for PTSD, in which a patient is exposed repeatedly to a traumatic memory in a safe environment. The goal is to modify the disturbing memory. But she says that type of therapy doesn’t work for her.

“They tried to get me to remember things,” she says. “I had a soldier who died, got blown up by a mortar — he was torn into pieces. So they wanted me to bring that back. I needed to stop that. It was destroying me.”

She has concluded that some memories will never leave her. “Everything I could get rid of as far as memory I think I’ve already done it,” she says. “I think the deep ones that you suffer from, I don’t think anyone can take them away. I don’t believe anyone can. I think the ones I have now, they’re going to just stay there. I’m just going to have to manage them.”

But what if these traumatic memories could be altered or even erased permanently? Researchers say they are beginning to be able to do that — not just in animals, but in people as well.

Not long ago, scientists thought of memory as something inflexible, akin to a videotape of an event that could be recalled by hitting rewind and then play. But in recent decades, new technology has helped change the way we understand how memory works — and what we can do with it. Scientists can now manipulate memory in ways they hope will eventually lead to treatments for disorders ranging from depression to post-traumatic stress to Alzheimer’s disease.

“We now understand there are points in time when we can change memory, where we can create windows of opportunity that allows us to alter memories, and even erase specific memories,” says Marijn Kroes, a neuroscientist at New York University.
Continue reading

How Playing Music Affects The Developing Brain

A cellist at the Conservatory Lab Charter School in Boston plays during a recital rehearsal. Research has found music instruction has beneficial effects on young brains. (Jesse Costa/WBUR)

A bassist at the Conservatory Lab Charter School in Boston plays during a recital rehearsal. Research has found music instruction has beneficial effects on young brains. (Jesse Costa/WBUR)

Remember “Mozart Makes You Smarter”?

A 1993 study of college students showed them performing better on spatial reasoning tests after listening to a Mozart sonata. That led to claims that listening to Mozart temporarily increases IQs — and to a raft of products purporting to provide all sorts of benefits to the brain.

In 1998, Zell Miller, then the governor of Georgia, even proposed providing every newborn in his state with a CD of classical music.

But subsequent research has cast doubt on the claims.

Ani Patel, an associate professor of psychology at Tufts University and the author of “Music, Language, and the Brain,” says that while listening to music can be relaxing and contemplative, the idea that simply plugging in your iPod is going to make you more intelligent doesn’t quite hold up to scientific scrutiny.

“On the other hand,” Patel says, “there’s now a growing body of work that suggests that actually learning to play a musical instrument does have impacts on other abilities.” These include speech perception, the ability to understand emotions in the voice and the ability to handle multiple tasks simultaneously.

Patel says this is a relatively new field of scientific study.

“The whole field of music neuroscience really began to take off around 2000,” he says. “These studies where we take people, often children, and give them training in music and then measure how their cognition changes and how their brain changes both in terms of its processing [and] its structure, are very few and still just emerging.”

Patel says that music neuroscience, which draws on cognitive science, music education and neuroscience, can help answer basic questions about the workings of the human brain.
Continue reading

How Addiction Can Affect Brain Connections

As much of the country grapples with problems resulting from opioid addiction, some Massachusetts scientists say they’re getting a better understanding of the profound role the brain plays in addiction.

Their work is among a growing body of research showing that addiction is a complex brain disease that affects people differently. But the research also raises hopes about potential treatments.

Among the findings of some University of Massachusetts Medical School scientists is that addiction appears to permanently affect the connections between areas of the brain to almost “hard-wire” the brain to support the addiction.

They’re also exploring the neural roots of addiction and seeking novel treatments — including perhaps the age-old practice of meditation.

Meditation As Part Of Addiction Treatment

After spending 40 minutes lying on the floor with his eyes closed, being led through a meditation exercise, one of the students in a recent mindfulness class said something that many of the other students appeared to be thinking.

“I’m irritated,” he said, as several of the 30 other students murmured in agreement. Some giggled.

“I can’t really sit this long with my eyes closed without falling asleep,” he added. “I think this is overall positive. Maybe I just have a long way to go.”

Mindfulness has been touted as a way to boost quality-of-life issues, and the students in the class were there for various reasons: some to learn to relax, others to cope with health issues, and — at least one student — to support her recovery from alcoholism.
Continue reading

In Search Of ‘Computational Psychiatry:’ Why Is It A Hot New Field?

By Suzanne Jacobs
WBUR Intern

It’s around 10 a.m. on a weekday when I walk into a coffee shop that apparently doubles as the preferred study spot of every student on the Boston University campus. My instinct is to leave immediately and find a quieter place to caffeinate, but I’m not here for the coffee. I’m here for information — information on what I’m hearing is one of the hottest new trends in brain science.

Winding my way through tables of frazzled co-eds, I search every face for that “Are you who I’m looking for?” stare, but no one acknowledges me. So I step back out onto the sidewalk and wait. I’m early anyway.

About five minutes later, a young man who would have otherwise been indistinguishable from the crowd of students locks eyes with me from about 20 feet away. “That’s my guy,” I think to myself.

Lights of Ideas (Andrew Ostrovsky)

(Andrew Ostrovsky)

Minutes later, coffees in hand, we’re seated at a small back table, and I put my digital recorder down on it. “Is it okay if I record this?” I ask. He says that’s fine.

At this point, what I really want to do is grab him by the shoulders and yell, “What are you people doing? Let me into your world!” For weeks, I’ve been looking into this new field of research called computational psychiatry, but for the life of me, I can’t figure out what it is. More frustratingly, I can’t figure out why I can’t figure it out, despite a strong science background and hours of reading what little I could find about the topic on the Internet.

But I hold back, press the little red circle on my digital recorder and let the man speak.

In computational psychiatry, “What you try to do is come up with a toy world…,” he begins.

This all started a few weeks earlier when I was perusing the latest edition of Current Opinion in Neurobiology. Don’t ask me why I was perusing Current Opinion in Neurobiology — I don’t know. To avoid doing something else, probably.

One article caught my eye. It was titled “Computational approaches to psychiatry.” A longtime subscriber to the drugs-and-therapy stereotype of psychiatry, I found the idea of new “computational approaches” intriguing, so I read on. Continue reading

How Childhood Neglect Harms The Brain

Like any new mother, the woman we’ll call Braille was full of hope and excitement the day she welcomed her son into her life seven years ago. “Peter” was 7 years old at the time of his adoption. He’d been living in foster care after being taken from his biological mother.

According to Braille, Peter and his siblings endured years of neglect and abuse living with their biological mother and her violent boyfriend. “It was physical, emotional and continual,” she says.

Peter, now 14, and his adoptive parents are very close now, but the years since the adoption have been challenging. His father recalls Peter’s unpredictable anger, and the times Peter would punch him, out of the blue. His mother says her son could be very sweet and affectionate one minute, but then “he would just fall apart and start banging his head against the wall or start screaming.”

Experts have long known that neglect and abuse in early life increase the risk of psychological problems, such as depression and anxiety, but now neuroscientists are explaining why. They’re showing how early maltreatment wreaks havoc on the developing brain.

Study Of Orphans Finds Smaller Brains

Dr. Charles Nelson, a Boston Children’s Hospital neuroscientist, studies how children’s early experiences shape the developing brain. Abuse and neglect, he says, can cause significant damage to the circuitry of the brain.

“Let’s say there are 1,000 neurons supposed to wire in a certain way, maybe only half wire that way and the other half wire in an incorrect way,” Nelson explains. “By altering the wiring diagram, you are altering behavior and altering psychological states.”

But what prevents the brain from wiring the right way, and how do early experiences get biologically embedded in the brain?
Continue reading